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Motivated by the dynamic output feedback passification results, point- to-point  control laws 

for an elastic joint robot are presented when only the position measurements are available. The 

proposed method makes a parallel connection of the robot system and an input-dimensional 

linear system which obtains the effect of the desired differentiators. It is shown that the closed- 

loop nonlinear robot system can be rendered output strictly passive and the regulation of the 

system is achieved in the end. Robustness analysis is also given with regard to uncertainties on 

the robot parameters. Performance of the proposed control law is illustrated in the simulation 

studies of a manipulator with three revolute elastic joints. 
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1. Introduction 

Since passive systems theory gained renewed 

attention (see (Byrnes etal. ,  1991) and references 

therein), passivity properties have been playing 

a vital role in designing various controllers for 

nonlinear systems and other applications (see e.g. 

(Lin, 1995; Fradkov and Hill, 1998; Jiang and 

Hill, 1998 ; Sepulchre et al., 1997 ; Ortega et al., 
1998) ). Many of the results are based on the fact 

that the Euler-Lagrange system e.g. a robot 

manipulator defines a passive operator from the 

control input to the generalized velocity vector 

(Ortega et al., 1998). The passivity-based con- 

troller design results in a simple proportional- 

derivative (PD) law (Takegaki and Arimoto, 

* Corresponding Author, 
E-mail : yson @ controlbusters.com 
TEL : 4-82-51-200-7713; FAX : 4-82-51-200-7712 
840 Hadan-2-Dong, Saha-Gu, Busan 604-714, Korea. 
(Manuscript Received August 25, 2001: Revised March 
28, 2002) 

1981) and, similar to that used for rigid robots, 

the control law suffices to globally stabilize the 

elastic joint robots about a reference position 

(Tomei, 1991b). 

However, the velocity measurements are not 

always available for the feedback law, hence, 

several authors have considered the set-point 

control problem without the velocity measure- 

ments. The need of measuring the rotor speed 

has been removed by using a suitable linear filter 

(e.g. (Berghuis and Nijmeijer, 1993 ; Kelly et al., 
1994)) or by observer-based controllers (e.g. 

(Ailon and Ortega, 1993; Nicosia and Tomei, 

1994)). (Refer to those papers and references 

therein for the motivations of this practically 

important line of research.) 

On the other hand, in the dynamic passifica- 

tion results (Son et al., 1999 ; Son et al., 2000), 

it is shown that the effect of differentiators can 

be obtained by a parallel connection with an 

additional dynamic system (see also (Bar-Kana, 

1987) ). Motivated by the results, instead of using 

the velocity measurements, we consider a parallel 
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connection with an additional dynamic system to 

solve the set-point control problem of an elastic 

joint robot. 

We first provide a sufficient condition with 

which a Lyapunov candidate function is proper 

and positive definite and, consequently, a PD 

control law achieves global asymptotic stability 

(GAS) of the robot system. Next, the additional 

system is constructed such that the zero dynamics 

(ZD) of the augmented robot system become the 

closed-loop system with the PD law in (Tomei, 

1991b). Our result provides another alternative 

way of replacing the role of velocity measure- 

ments in (Tomei, 1991b) and is essentially differ- 

ent from the previous results (Berghuis and 

Nijmeijer, 1993; Ailon and Ortega, 1993; Kelly 

et al., 1994 ; Nicosia and Tomei, 1994). 

We will consider two cases in designing the 

control law. In the first case, when only the rotor 

position is available, the GAS of the closed-loop 

system is guaranteed. The property of output 

strict passivity (OSP) can be also obtained. 

Moreover, robustness with respect to uncertainties 

on some of the robot parameters is achieved as 

in the PD controller (Tomei, 1991b). The perfor- 

mances of the control law are studied for a three 

link manipulator with three rigid bodies inter- 

connected by three revolute elastic joints, in the 

second case, when the link position is also avail- 

able, the properties in the first case are obtained 

by a smooth (linear) control law. 

The idea of using a parallel feedtbrward con- 

nection has been also considered in a practical 

adaptive controller design i.e., simple adaptive 

control law (SAC) (Bar-Kana, 1987). For rigid 

robots, an adaptive control law is provided in 

(Bar-Kana and Guez, 1990; Kaufman et al., 
1998). Though a non-adaptive stabilizing gain 

/-% is provided in (Kaufman et al., 1998), it 

contains the velocity vector and the fixed gain is 

not useful when the velocity measurements are not 

available. Main differences from the results are 

summarized below : 

(i) An elastic robot is considered with simulation 

studies. 

(ii) A Lyapunov function is explicitly given under 

the physical energy consideration (Tomei, 

1991b ; Ortega et al., 1998). 

(iii) The additional dynamic system (V)  is not a 

direct inverse of the transfer function of the 

PD controller. 

(iv) Only two of the states (not whole states) are 

transformed into new states in normal form. 

(v) The output y as well as the augmented output 

35 is used for control laws. 

(vi) Any modification to alleviate the steady state 

error is not required. 

The paper is organized as follows. In Section 2, 

definitions of passivity and basic results for the 

PD control of elastic joint robots are presented. A 

new sufficient condition under which the PD law 

achieves GAS is also provided. Section 3 presents 

dynamic output feedback controllers without 

velocity measurements. Robustness analysis of the 

proposed control law is carried out in Section 4. 

Simulation results are presented in Section 5. 

Some conclusions are given in Section 6. 

Notations: In is an n × n  identity matrix. 

When x is a vector, xi represents its i -th element 

and Ix] means sqrt 4'xrx. /~m(K) (or /tM(K)) 
stands ]'or the minimum (or maximum) eigenvalue 

of a matrix K, and II K II means its largest singular 

value. 

2. Prel iminaries  

2.1 Passive and feedback passive systems 
Consider the following nonlinear system 

.~ 2 = / ( x )  + g ( x )  u, x ~ R  n, u ~ R "  
(P) "( y = h  (x),  v ~ R  m (1) 

where x is the skate ; u is the control input ; y is 

the output and the vector fields f ,  g and h are 

smooth with f ( 0 ) = 0  and h(0) = 0. 

Definition I. (Hill and Moylan, 1977) The sys- 

tem (1) is said to be output strictly passive (OSP) 

if there exist a /9)-0 and a real constant fl such 

that, V t > 0 ,  the following dissipation inequality 

holds : 

f o tur ( r )y ( r )dr+13>_O f o ' y r ( r ) y ( r ) d r  (2) 

More basically, if p = 0  in (2), the system is said 
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to be passive. 

Systems that can be rendered passive by a 

feedback will be called feedback passive systems. 

Moreover, the procedure is called passification. 

Byrnes et al. (1991) showed that, under some 

mild assumptions, the given system is globally 

feedback equivalent to a CZ-passive system with a 

positive definite storage function if and only if the 

system has relative degree one and is globally 

weakly minimum phase. 

If (1) has relative degree one, under some 

conditions, it can be represented as the normal 

form 

2=q0(z )  + q i ( z ,  y ) y ,  z ~ R  n-m 
y = b ( z ,  y) + a ( z ,  y) u, y ~ R  m (3) 

where a(z ,  y ) = L g h ( x )  is nonsingular for all 

x ~ R  n. The zero dynamics (ZD) of (3) is 

described by 

2=q0(z ) ,  zER"-" .  (4) 

The system (I) is minimum phase if the equilib- 

rium z = 0  of its ZD subsystem (4) is asymptotic- 

ally stable. 

In this paper, we consider a parallel connection 

of (1) and the following additional system (see 

Fig. I) to get the effect of the differentiators 

t 0 = k ( r j ) + u ,  ~ER m. u ~ R "  
(V):  ~ y~=~.  (5) 

The function u ( ' )  is used to make some modifi- 

cation of the output y. Note also that the system 

(5) has the same dimension with the input 

of (1). In this case, (5) is called input-dimen- 

sional system. 

In the next section, with a properly designed 

system (5), new control laws are provided which 

suffice to globally stabilize the elastic joint  robots 

• ( P )  

Fig. 1 Parallel connection 

l J  

about a reference position. This scheme is an 

alternative way of replacing the PD controller 

when the velocity measurements are not availa- 

ble. For  the complete proof  of our approach, we 

briefly introduce the PD law in (Tomei, 1991b). 

2.2 Tomei ' s  P D  control  sys tem 

Consider the elastic joint  robot model (Ailon 

and Ortega, 1993 ; Kelly et al., 1994) 

{ D(q~) q l +  C(qb  0~) 0 1 + g ( q t )  : K ( ( / z - q t )  

./02 + K (q2-  q~) = u (6) 

Y=qz 

where q l ~ R  n and q z C R  n represent the link 

angles and motor angles, respectively; u ~ R "  is 

the torque vector; y is the measurable position 

output ;  D(q~) is the inertia matrix for the rigid 

links : . / i s  a diagonal matrix of actuator inertias 

reflected to the link side; C(qt,  Ot)0~ represents 

the Coriolis and centrifugal forces; g(q2) 

represents the gravitational terms, and K is a 

diagonal matrix containing the joint  stiffness 

coefficients. One of the important structural 

properties of the model (6) is that the m a t r i x / 9 -  

2C is skew-symmetric. More detailed discussions 

can be found in many other references e.g. (Spong 

and Vidyasagar, 1989 : Ortega et al., 1998). 

Tomei (1991b) proposed the following PD 

controller to solve the set-point regulation pro- 

blem 

u = -Kp(q2-qza) -Ka(lz+g(q,a) (7) 

where A~ and Ke are diagonal positive definite 
matrices ; q~a is the desired link position which is 

assumed to be constant, and qza is a constant 
vector defined by 

K ( q ~ -  q~) = - g  (q~).  (8) 

Let H ( q l ) : = 0 g ( q l )  and 4 = q - - q a = [ ~ t  r42r] ~ 
Oq~ 

when qa= [qre qzra] r Global  asymptotic stability 

(GAS) of the c losed- loop system (6)-(7)  is 

established if the following inequality holds 

Am(Z):=A~[ K K - K  _ K + K p l > a  (9) 

or, equivalently, 
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min{ Am(K), Am(K~) } > 3 + i ' V e  (10) 

where a~ll H(q~)[] Vq l~R" .  Indeed, by virtue 
of (9) or (10), the closed-loop system has a 
unique equilibrium point q = q a ( o r  t~=0) which 
is the solution of the following equation 

It is also an absolute minimum point tbr the 

following function 

1 r PI=~O 2(.a, + Ul(ql) - q ,  rg(qte) (12) 

OUt(ql) With (12) the follow- where g(ql) - -  9ql " 

ing function 

I r . + I  . r . -  
V(q, el)=~(11 D(ql) ql ~q2 Jq2 (13) 

+ Pl(q) -Pl(qa) 

is proper and positive definite with respect to 
tilde ~ = 0 = 0 .  The time derivative of (13), along 

(6)- (7), is given by 

l / (q,  q ) = - 4 2 r K u 4 2 .  (14) 

By applying the LaSalle's lnvariance principle, 
GAS of the closed-loop system is obtained. 

We complete this section by the following 
corollary which provides another sufficient condi- 
tion for GAS of the closed-loop system (6)-(7).  

C o r o l l a r y  1. If the following inequality holds 

min{ ?~m(K),/~,,(Kt,) } > 2 a  (15) 

where a>][ H(ql)H, then the closed-loop system 
(6)-(7) has a unique equilibrium point q=qa 
which is GAS. 

Proof. It will be shown that by (15), instead 
of by (10), (11) has a unique solution q=qa 
which is also the absolute minimum point lbr 
(12). The rest of the proof is illustrated in the 
above or in (Tomei, 1991b). 

[I~ 0q 
if we multiply In I,,J to both sides of (11), 

then 

[o ) (16) 
Kp J \ q z / - - \  g(qla) --g(q,) /" 

This implies ~2=K71(g(q~a)-g(q~)) and 

x14,=g(ql~) -g(ql) (17) 

when Z l = ( / , + K K i l ) - l K .  Let K = :  diag{ ki} 
and Kp=:  diag{ Pi }. ZI is a diagonal matrix and 

its i- th diagonal element is (kiPi) (ki+Pi) -1. 
By (15), (kx+Pi ) (k iP~) - l<a  -1, which implies 
Am (Zt) > a. Therefore, 

Ix1411 >Am(X1) I 411>al 41 ] (18) 
> Ig(qla) -g(q l )  I 

for all ql#=qla. This implies (17) has the unique 
solution ql=qla. Hence, (11) has the unique 

solution. 
Moreover, 

c32P~ , c3 [ g(qt) 

aq2=x~-~qk o ) (19) 
= [K+HK(ql) - K  

K + KpI 
Since xlrH(ql)x12--axqrxl,  Vxt, q l ~ R  n, 

(xlr x2r)[K+H(Kql) - K  xl) 
- K+K,](x2 (20) 

> x :  ( K -  aI,) x l -  2x:Kx~ +x2 r ( K +  Kp) x2 
I 1 

where x2~ R n. L e t / ~  : = K - a I ~ = K : K 2 ~ .  I~ is 
positive definite by (15), and the right side of 

(20) is rewritten as 

½ -½ 2 r - 1  I I~ x,- I~ Kx21 +x2 (K+Kp-KKi K)x2. (21) 

Since K + K p - K K 2 - 1 K  is diagonal and its i-th 
diagonal element is positive by (15), (19) is 
positive definite. This means q=qa is an absolute 
minimum point for /°1. • 

In the next section, a method for designing the 
additional system (5) is provided. 

3. Po int - to -Po int  Control of  Elastic 

Joint Robots 

In this section, we show that the velocity 
measurements in Tomei's scheme can be replaced 
by using an additional input-dimensional system. 
Notice that the system (6) has relative degree of 
two and the standard passivity-based control law 
cannot be applied directly. We will take two steps 
in the procedure : first an additional system and a 
new output are determined such that the compo- 
site system has relative degree of one and its ZD 
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become the system (6) - (7) .  Then the regulation 

of the overall system is performed. 

Since (7) is a linear control, the additional 

dynamics are chosen to be the following linear 

system 

O=Eri+u,  ~ E R "  (22) 
y~=~. 

The new output and its time derivative are given 

by 

• d 35=v(q2) +z], and y = ~ v ( q z )  + E ~ + u .  (23) 

If we choose 

v ( q2) = Fqz + G 

with F=Ku,  G=-Kuqza-KaK~lg(q ta )  and 

E = - K~K2~, then 

d v(qz) +Ev(q2) =-K~2-Kdq2+g(q~a) (25) 
dt 

Note that (25) is the very PD law (7). Conse- 

quently, the composite system (see Fig. 1) is 

determined as 

D(ql) ~ + C (q~, dh) O~ + g(q~) = K  (q2-q~) 

J ?]2K ( q2- q~) = u (26) 
O = - K~KS ~ rl + u 
y=Kaqz+ ~+G. 

Recall that the main feature of the normal form 

is that the control input does not appear in the 

dynamic equations of  the ZD• With this in mind, 

in order to preserve the physical meaning of the 

system Eq. (26), only two of the state variables 

are transformed into the new variables by the 

following CT 

Kaq~ + ~ + G / 

By (27), the system (26) is rewritten as 

D(q~) ?j~ + C (q~, dh) ?l~ + g(q~) = K  (q~-ql) 
J~= - K  (qz-q~) - K p ~ z -  Ka~4- g(q~a) 

+ (KM-G' - K d - ' )  33 (28) 

+ ( K J  -~- K~K2 ~) 9 + u. 

It is obvious that the system (28) has relative 

degree of one and is minimum phase because 
$ - - q  when 35--0. 

We take a positive definite Lyapunov function 

V (q, 41, ~, Y) ---- Vl(q, 41, ~:) 4- Vz(33) as follows: 

V , = I o , T D  (q,) 01 + l $r.l '$+ P, (q) - Pt (qd) 

l -r-  (29) 
Z . ,  

V~= 2-y y. 

Let K ; ~ K p - J - ~ K ~ + K ~ = :  O and J - I ( K + K p )  
+ K p = :  R. Then, the time derivative of  Valong  

(28) gives 

V= _ ~rKd~e+ 33ro~ + j r  ( K d - ' - K p K ;  ~) y (30) 
+ j r  (R~z_ j -~K4,_g  (q,d) + u). 

If the control input is 

u = - K j - ~ y - R ~ 2 + g ( q ~ a )  +uz, (31) 

V =  -~rKn$+33rQ~-33rKpKgl~ (32) 
+37 r ( - J - ' K ~ ,  + u2). 

When Q is positive definite diagonal, by applica- 

tion of Schwarz's inequality, 

~rQ~=~r  /~fO-~<_1733rQ33+ y~rQ~ (33) 

with a constant 9,>0 such that Ka-7Q>O.  
With (32) and (33), 

(34) 
+ j r  (_ j -~K~,+ u2). 

At this point, we consider the following two 

cases. In the first case, only the rotor position q2 

is available for feedback. The link position ql is 

supposed to be also available in the other case. 

3.1 Case 1: control law using only q2 

Note that, especially when the set-point regu- 

lation problem is concerned, there exists b i > 0  

such that [(ql) / 1=[ (ql) i - -  (qla)i  [ g  bi, 1 ~ i<  n. 
Let Bq :=diag{ b~- } and (sgn(37))i=sgn(371). 

The next result provides a control law with 

which the c losed- loop system is GAS. 

Proposition 1. Consider the system (26) with 
the following control law 

u = -  R~z+g(q td ) - - (  4~Q+KaJ  - t ) )  (35) 

-J-1KBqsgn (9) + r. 

When Q is positive definite and Kd--~ 'Q >0  with 

T>0,  the c losed- loop system is OSP from r to 
33 if the inequality (15) is satisfied• Moreover, 

2opyright (C) 2003 NuriMedia Co., Ltd. 



1084 Young-lk Son, Hyungbo Shim and Jin-Heon Seo 

when r=O, it has the unique equilibrium point 
[~r  qr  35r]r=0 which is GAS. 

Proof By (15) the closed-loop system has the 
unique equilibrium point [~r  Or y r ] r = 0 "  

Since - 'Orl- lK~,  <_ ~, k -' _ ,bd, 13, l ,  
i=  1 

I 2 ~ - ~ e r ( t ( a - T O )  ~- f : rK~Kgty+yrv .  (36) 

This implies the OSP of the closed-loop system 
(28)-(35) from r to v. Moreover, by the La- 
Salle's lnvariance principle and similar analysis 
in (Tomei, 1991b), the GAS is obtained when 
r = 0 .  

Remark 2. Instead of the function sgn(-) in 
(35), by using the technique in (Su and Xie, 
1996), the OSP property can be obtained by the 
following control 

u = -  R~2+ g(q,a) - (  ~ Q +  KoJ-l ) y -  v + r (37) 

where vi=kibiydi-~(lyilq-s) -~ and e=eoe -ca 
with arbitrary constants ¢o, ct>O. Indeed. by 
(37) 

? < _ ~r (K~- tO) ~-yrK~Kg'Y 

+ ~ kibij~_~eoe_Ca +~rr" (38) 
i=  1 

The integration over both sides of (38) results in 

/0' /0' 7 ( r )  r ( r ) d r + f l > - p  35r(r) v ( r ) d r  (39) 

where p=min{(K~Kg~)i } and 

f l= V (O) + ~-] k~bisoJi-~ c? 1. 
i = 1  

The "sgn" -function is usually approximated by 
a differentiable function tbr the practical use 
(Edwards and Spurgeon, 1998). The Ibllowing 
proposition formalizes the result when 7=1.  

Proposition 2. Consider the system (26) with 
the following control law 

u = - R q z + g ( q l a ) - ( I Q + K ~ - l )  -~ (40) 

- J - I  KBqtanh ( ~y ) 

where 2 2  I. If the inequality (15) is satisfied, the 
closed-loop system has the unique equilibrium 
point [c] r O r v r ] r = 0  which is globally bounded. 

Moreover, if there exists a time h such that for all 

time t >--h the following inequality is satisfied 

- y r j - ~ K B d a n h ( a y )  - y rJ -~K~ ,~O (41) 

then the equilibrium point is GAS. 
Proof The closed-loop system (28)-(40) is 
given by 

D ( qt) ?it+ C ( ql, gt~) ilt + g ( q~) = K ( q2- qt) 

+ (KPA~-~- KJ-t)37 (42) 

v= - I  (sK2tK~,-J-~K,~+ Ka) ')+ Ka~ 

- J - '  (K+ Kp ~2-J-~t'(Bqtanh ( • ) .  

Since ~ = - J - 1 9  when (1=0, the equilibrium 
points are the solutions of 

I ' { ~ -  K~2=g ( q,a) - g ( q~) 
- K~, + (K + Kp) &=KpK2'  y (43) 
S f' +]-~KBqtanh (6y) = _ j - i  ( I f+ I~) q2 

I 
where S=~(5KoKj I+3J -1Ka+Ka) .  Since the 

left hand side of  the third equation in (43) is 
smooth and strictly increasing function of y, there 
exists a positive diagonal matrix Z/1(35) >0  such 
that v=--Z/l(y)c~2. Hence, the other two equa- 
tions in (43) are rewritten as 

[ A K - K  ] ( q l ] = ( g ( q t a ) - g ( q x ) )  (44) 
K+Kp+zIJ \&/  0 

where ,d(35)=Kt, K,21zJt(.#). Equation (44) has 
the unique solution q=qa by (15) because /lm 
(Kp+ zJ) >Am (Kp) . Consequently, the closed-loop 
system has the unique equilibrium point. 

With the control law (40), 

V <_- ~r (l- 'Ka-Kd'Kp) ~ -  )rKt, K~t, J (45) 
9" " - t i c  y r J - 'KBqtanh  (a.v) - .  J q~, 

+~.k ,b i j i_ t ly  i(l_ltanh(a33,)l). (46) 
i=1  

The first three terms in the right hand side of (45) 
are always negative except ~ = y = 0 ,  and V < 0  
for all 133 1_>8 with an arbitrary small 8'(<1 and 
some a_> 1. This guarantees the boundedness of 
the closed-loop system. Moreover, if the inequality 
(41) is satisfied, (36) holds for all t2t~. (This 
is probable because c]~ converges to zero when 
y~-0.) This implies the GAS of the closed-loop 
system. 
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3.2 Case 2: Using the Measurements q~, q2 
If the link position qt is also available, we 

consider the tbllowing control law 

u = - R q 2 + g ( q ~ a ) - ( I Q + K a J - ~ )  y (47) 

+J-~KO, + r. 

Then, the closed-loop system satisfies the in- 
equality (36) and is OSP from r to 37. 

Proposition 3. Consider the system (26) with 
the control law (47). If the inequality (15) is 
satisfied, the closed-loop system (28)-(47) has 
the unique equilibrium point [~r  t~T 37f i r=0 

which is GAS when r = 0 .  
Proof. The equilibrium points are the solutions 

of 

KO,-  KO2= g ( q,a) -- g ( q,) 
- K 4 ,  + (K+Ko)Oz-K~KS'f~=O (48) 
J - ' K O , - J - t  (K + Ko) Oz- S.y = 0. 

From the last two equations of (48), 

42 = (K + K~) -' K4,. (49) 

By (49), the first equation of (48) is rewritten as 

[ I , - K ( K + K , ) - l ] K O , = g ( q ~ e ) - g ( q ~ ) .  (50) 

Since [In - K ( K  +Ko)- t]K = (1, +KKf ) -~ ,  
(50) coincides with (17). Hence, (50) has the 
unique solution by (15). Consequently, by (49) 
and (48), the closed-loop system has the unique 
equilibrium point. Moreover, since (36) is satis- 
fied, the equilibrium point is GAS. 

4. R o b u s t n e s s  A n a l y s i s  for  P a r a m e t e r  

U n c e r t a i n t i e s  

If there exist uncertainties on the gravitational 
and elastic parameters, the equilibrium point is 
different from the desired one. In that case, the 
result of Proposition 2 is still valid for the 
unknown new equilibrium point. Let g(qt)  and 
/~ be, respectively, the available estimates. Then, 

37=Keqz+n+G (51) 

where C=-Ke~ze -KeK; I~ (q ,a ) ,  and ~ze is 
defined by /£(02d--q~d):~(q~d) .  The system 
equation (28) is replaced by 
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D(q,) ~ + C (qb q,) ft~ + g(q,) =K(qz-q~) 
] ~ = - K ( q2- q,) - Kp ( q2- 02,~) - Ke~ 

+ ~ ( qta) + (KpKg'- K j - ' )  y (52) 

y=Kp(q2-02a)  + Ka~- ~ ( q,a) 
+ (Ke]- '-KpKj')  33 + u. 

Moreover, with Bq=2Bq the control law (40) is 

modified to 

u = -  (J- ' (R  + Kp) + K~) (qz- O2e) +~'(q,a) 

The closed-loop system (52)-(53) becomes 

D(q,) ?i+ C(q,, O0 Clx+g(qO =K(q2-q,)  

+ ~ ( qta) + ( KpKj~- K J  -') f' 

y=_I(5Kj ,Kp_j_ ,Kd+Ke)33+Kd ~ (54) 

- J-'  (R  + Kp) ( q2-02.) 
-J-i/~]~qtanh (a3 3 ) 

The equilibrium points are the solutions of 

KO i - KOz-: g ( q,a) -- g ( qO 
-KO,  + KO2+ Kt,(q2-Oze) - K ,  K g ' )  

=o~(q,e) --g(q,a) (55) 
$37 +J-~/~/3qtanh (o"37) 

= - / - I ( R + K p )  ( q z -  0~e) 

Since there exists a positive diagonal matrix z~ 
(y) >0  such that 37=--~2(37) (q2--q2a), the first 
two equations of (55) are rewritten in the matrix 
form by 

( g(q~e) -g(q,) ) 
2, q # = \  (Kp +.~) (Ozd--qzal + ~(q,e) - g(q,d) (56) 

where z~(37)=KpKa-lzJz(37) and 

By the similar analysis of the proofs of Proposi- 
tion 2 and Theorem 2 in (Tomei, 1991b), q={la 
is .the unique solution of (56). An estimate of the 
difference of qa and qe is derived as 

I I O.--qe I ~ - - ( A M ( 2 ) l O z e - - q 2 e  I A,.(2) - a  (57) 

+] #(q2a) --g(q~a) ]) 

Define the function 
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l T "1- " ' 

(58) ) 
', K~ ( ~ , ~ -  q~,,) + #  ( q.,)  - g ( q,,,) / 

The boundedness of the c losed- loop system (54) 

is obtained with the following Lyapunov function 

1 . r D ,  , .  + 1  - r - -  l~(q, (h, ~, Y ) = ~ q ~  iqz) qz ~ ¢  J¢ 
(59) 

I - T -  + Pz(q) - P2(qe) + T y  y. 

Indeed, the time derivative of 1~ along (54) is 

¢ ~ _ ~r (l-l Ka_ K-~ Kp) ~_ ~Z K~Kj,~ 
+ y r j - t [ ( K - / ~ )  (qz-qt)-/~Bqtanh(aY)] (60) 

+¢r]-~ [ - R ~ I - R B , t a n h  (ayy) ] 

Since [(qz) i -  (qt) i [ is also bounded by the same 

b~>0, l ~ i ~ n ,  as ql, the boundedness of all the 

states of (54) is obtained from the analysis of 

Proposition 2. 

5. S imulat ion Results  

In order to test the dynamic pertbrmances of 

the proposed controller, the same numerical 

simulations as in (Tomei, 1991b) were carried 

out on a three link manipulator  with three rigid 

bodies interconnected by three revolute elastic 

joints. All  the robot parameters are the same as in 

(Tomei, 1991a; Tomei, 1991b) except ae=O. 
Moreover, the simulation runs were also 

performed with the control law in (Kelly et al., 
1994) to compare the performances of the control 

law. In the well-known scheme, the following 

linear filter is used to approximate the velocity 

measurements (Kelly et al., 1994, Proposition I) 

~c= - A x  - ABq2 (61) 
c9 = x + Bqz, 
u=-K~(q~--qza)  -KaO+g(q~a) .  (62) 

In the simulations, A = 3 0 I a  and B=I013  as in 

(Kelly et al., 1994). It is interesting to note that 

the c losed- loop system (6) - (61) - (62)  can be 
viewed as a feedback connection of  two passive 

subsystems (see also (Lanari and Wen, 1992)). 

On the other hand, the passive properties in this 
paper are obtained by the temporary feedtbrward 

connection. 

2opyright (C) 2003 NuriMedia Co., Ltd. 

The problem considered is that of regulation 

about the reference position 

q la=I4  7r4 41 r' q2d=qla+K-lg(qld) 

starting from the following initial conditions 

q~0=qz0= 0 ~ 0  , 0~0=020=350=[0 0 0] r. 

The proport ional  and derivative gain matrices are 

chosen as in (Tomei, 1991b) i.e., Kt,=300013 and 

K~ = 1000A. 
The simulation results by the three control laws 

i.e., (Tomei, 1991b), (Kelly et al., 1994) and 

(40) with Bq=2ZrI3, cr= l  are all presented in 

Fig. 2. Note that Tomei's scheme requires the 

velocity measurements. Since the maximum dif- 

ferences between (Tomei, 1991b) and (40) are of 

order 10 -4 for ql and 10 -z for 0~, respectively, in 

Fig. 2 it looks as if they had the same trajectories. 

Hence, it can be said that the proposed control 

law approximates the velocity measurements more 

accurately than (Kelly et al., 1994). 

Link I poe, ilIO~ 

: .Ke 

O.6 ' 
: ed & Tomei  °,Ii / 0:Li 

o; T ~ 3 

(a) State "q,.l' 
Link 2 position 

O 5[  ",. LKelly 

[ ~..,. 

% T 2 s 

Unk  I V ~  

I Ke!Iy ,x~ ; , ~  

1 .Proppped & Tome~ 

o ~ , : ~ 2 , "  ,'.~,,,,,.,:..-.:..,....,.. 

-'i 
-2~ 1 2 3 

(b) State '01.1' 
U~ 2 VQIoelly 

I .i~,. 4 

:., @)~:; '/:,' ;-k..,..:,.::,);:k., o 

)i: I 

1 2 3 4 

(c) State "qi.2' (d) State '01.2' 
lank 3 Po~l~rl  Unk  3 V~odty  

0.B 

O,§ 

0,4 

02  

1 2 3 4 0 1 2 3 4 

(e) State 'ql.3' (f) State "Ol.£ 

Fig. 2 Comparison of the simulation results 
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Link 1 Position 

i / -  
05i / 

i/ 
0~ 1 2 3 

(a) State 'q~.l' 
Unk 3 Position 

1, 

(c) State "ql, 3' 
Link 2 Velocity 

-s i 

-10~ 1 2 3 

Link 2 Position 
2 

0. 

(b) State "ql.z' 
Link 1 Velocity 

",... 

- 2 3 

(d) State 'q1,1' 
Link 3 Velocity 

-4• 1 2 3 

(e) State 'ql.2' (f) State 'ql.3' 

Fig. 3 Robustness for parameter uncertainties 

4 

In order to verify the robustness of the pro- 

posed controller, another simulation was per- 

formed in the same manner as in (Tomei, 1991b). 

The simulation test was repeated by using a dif- 

ferent payload (see (Tomei, 1991b, Table 1)) and 

the elastic constants that are 10% greater than the 

nominal ones. Note that the controller was 

designed with the nominal parameters. Both the 

result by the exact Tomei's law (7) and the new 

result are reported in Fig. 3. 

6. Conclusion 

The set-point  (or point - to-point )  control pro- 

blem for an elastic joint  robot is considered. We 

first provide somewhat relaxed sufficient condi- 

tion with which a Lyapunov candidate function is 

proper and positive definite. Consequently, the 

PD control law in (Tomei, 1991b) achieves GAS 

of the c losed- loop robot system. 
Though the PD law is a good solution to the 

problem, the velocity measurements are not 
always available for the feedback law. To obtain 

the effect of the velocity measurements, the pro- 

posed method makes a parallel connection of  

the robot system and an input-dimensional  addi- 

tional system. Under some conditions, the pro- 

posed control law achieves the effect of the 

desired derivatives of the output and the problem 

is solved with only the position measurements. 

Robust property with regard to the gravitational 

and elastic parameters are also obtained. In 

simulation studies of a manipulator with three 

revolute elastic joints, the proposed controller 

shows some enhanced performances to the previ- 

ous result in (Kelly et al., 1994). 
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